
POSTGRESQL TOOLING FOR THE COMMUNITY

OPEN SOURCE FOR EVERYONE

THINGS THAT WE FOUND USEFUL

OPEN SOURCE
MEANS

OPEN FOR NEW IDEAS

“

“

MANY THINGS IN OUR REPOS

PERFORMANCE AND MONITORING
Tools to monitor and improve performance

AUTOMATION AND ORCHESTRATION
PostgreSQL on Kubernetes and on-prem

ADMINISTRATION AND SECURITY
Manage and secure your databases

https://github.com/cybertec-postgresql/

PERFORMANCE AND MONITORING

THINGS TO IMPROVE SPEED

● PostgreSQL monitoring at scale
○ We collect EVERY metric PostgreSQL provides
○ Ready made dashboards
○ Automatic service discovery
○ Support all relevant versions

● pgwatch3: Around the corner
○ More modern technology
○ Better at scale
○ More enterprise features

PGWATCH2 / 3: ADVANCED MONITORING

GUIDE

← tested with 10.000 databases

● “explain” provides execution plans

● But:
○ Which plans are currently running?
○ Plans currently running or not visible
○ How can we analyze running queries?

● pg_show_plans comes to the rescue

PG_SHOW_PLANS: LIVE PLAN MONITORING

GUIDE

← No performance without visibility !

testdb=# \x

Expanded display is on.
testdb=# SELECT * FROM pg_show_plans_q;
-[RECORD 1]---
pid | 11473
level | 0
plan | Sort (cost=72.08..74.58 rows=1000 width=80) +
 | Sort Key: pg_show_plans.pid, pg_show_plans.level +
 | -> Hash Left Join (cost=2.25..22.25 rows=1000 width=80) +
 | Hash Cond: (pg_show_plans.pid = s.pid) +
 | Join Filter: (pg_show_plans.level = 0) +
 | -> Function Scan on pg_show_plans (cost=0.00..10.00 rows=1000 width=48) +
 | -> Hash (cost=1.00..1.00 rows=100 width=44) +
 | -> Function Scan on pg_stat_get_activity s (cost=0.00..1.00 rows=100 width=44)
query | SELECT p.pid, p.level, p.plan, a.query FROM pg_show_plans p +
 | LEFT JOIN pg_stat_activity a +
 | ON p.pid = a.pid AND p.level = 0 ORDER BY p.pid, p.level;
-[RECORD 2]---
pid | 11517
level | 0
plan | Function Scan on print_item (cost=0.25..10.25 rows=1000 width=524)
query | SELECT * FROM print_item(1,20);
-[RECORD 3]---
pid | 11517
level | 1
plan | Result (cost=0.00..0.01 rows=1 width=4)
query |

PG_SHOW_PLANS: LIVE PLAN MONITORING

GUIDE

← Real information in real time

PGFACETING: SUPER FAST FACETING

GUIDE

An example of faceting ->

● What is faceting in the first place?
● Why is it relevant?

● Usually very expensive
○ Involves expensive counting
○ Slow to implement

PGFACETING: SUPER FAST FACETING

GUIDE

https://github.com/cybertec-postgresql/pgfaceting

● Super fast implementation using “roaring bitmaps”
● Experiment with 100.000.000 rows
● Plain SQL takes 4 min 42 seconds

postgres=# SELECT facet_name, count(distinct facet_value), sum(cardinality)
FROM faceting.count_results('documents'::regclass,

 filters => array[row('category_id', 24)]::faceting.facet_filter[])
GROUP BY 1;

 facet_name | count | sum
------------+-------+----------
 created | 154 | 60812252
 finished | 154 | 60812252
 size | 7 | 60812252
 type | 8 | 60812252
(4 rows)

 Time: 155.228 ms

AUTOMATION AND
ORCHESTRATION

POSTGRESQL ON KUBERNETES

AND ON-PREMISE

● Fully functional PostgreSQL Operator for …
○ Kubernetes / OpenShift / Rancher
○ RedHat certified package available !

● Substantial improvements over the Zalando operator
○ Faster development cycle
○ Made for more generic needs

● Full support available provided by us
● Soon available for “Multi-Site Kubernetes”

POSTGRESQL OPERATOR FOR KUBERNETES

GUIDE

https://github.com/cybertec-postgresql/CYBERTEC-pg-operator

● Fully features PostgreSQL scheduler
● NO server side stuff needed (processes, modules, etc).
● Single, easy to deploy binary
● Can run:

○ Single tasks
○ Chains of tasks
○ SQL, builtin and Shell tasks

● Support:
○ Non-overlapping execution
○ Async execution (“suicide jobs”)

PG_TIMETABLE: SCHEDULING DONE PROPERLY

GUIDE

https://github.com/cybertec-postgresql/pg_timetable

ADMINISTRATION AND
SECURITY

OPERATION EXCELLENCE

● Security audits become more frequent
● Security does matter
● How can we …

○ Compare: “Reality” vs “desired state”
○ See all permissions at one glance

● pg_permissions does all of that and more

PG_PERMISSIONS: AUDIT AND SECURITY

GUIDE

https://github.com/cybertec-postgresql/pg_permissions

test=# SELECT * FROM all_permissions WHERE role_name NOT LIKE 'pg%';
-[RECORD 1]-------------------------------------
object_type | TABLE
role_name | joe
schema_name | columnar_internal
object_name | options
column_name |
permission | SELECT
granted | f
-[RECORD 2]-------------------------------------
object_type | TABLE
role_name | joe
schema_name | columnar_internal
object_name | options
column_name |
permission | INSERT
granted | f
…

PG_PERMISSIONS: AUDIT AND SECURITY

GUIDE

https://github.com/cybertec-postgresql/pg_permissions

INSERT INTO public.permission_target

 (role_name, permissions,

 object_type, schema_name, object_name)

VALUES

 ('appuser', '{USAGE}',

 'SEQUENCE', 'appschema', 'appseq');

SELECT * FROM public.permission_diffs();

 missing | role_name | object_type | schema_name | object_name | column_name | permission

---------+-----------+-------------+-------------+-------------+-------------+------------

 f | laurenz | VIEW | appschema | appview | | SELECT

 t | appuser | TABLE | appschema | apptable | | DELETE

(2 rows)

PG_PERMISSIONS: AUDIT AND SECURITY

GUIDE

https://github.com/cybertec-postgresql/pg_permissions

● Shrink table WITHOUT excessive locking
○ Just a short lock at the end

● Shrink tables when VACUUM cannot help anymore
● Especially useful when facing “hyper bloat”

○ For example: 1 GB -> 1 TB (no way to fix with normal VACUUM)

PG_SQUEEZE: ENDING TABLE BLOAT

GUIDE

https://github.com/cybertec-postgresql/pg_squeeze

CREATE EXTENSION pg_squeeze;

SELECT squeeze.squeeze_table('public', ‘t_test’);

PG_SQEEZE: AD HOC ACTION

GUIDE

Shrinking on demand

Be prepared for potential failures
It can happen by design in some cases

INSERT INTO squeeze.tables (
 tabschema,
 tabname,
 schedule,
 free_space_extra,
 vacuum_max_age,
 max_retry)
VALUES (
 'public',
 't_test',
 ('{30}', '{22}', NULL, NULL, '{3, 5}'),
 30,
 '2 hours',
 2
);

PG_SQEEZE: SCHEDULED ACTION

GUIDE

schedule shrinking

THERE IS A LOT MORE

AND MORE IS TO COME

ANY QUESTIONS?

FEEL FREE TO ASK

HANS-JÜRGEN SCHÖNIG
CEO & FOUNDER
EMAIL
hs@cybertec-postgresql.com

PHONE
+43 2622 930 22 - 666

WEB
www.cybertec-postgresql.com

